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We propose an approach for properly analyzing stochastic time series by mapping the dynamics of time
series fluctuations onto a suitable nonequilibrium surface-growth problem. In this framework, the fluctuation
sampling time interval plays the role of time variable, whereas the physical time is treated as the analog of
spatial variable. In this way we found that the fluctuations of many real-world time series satisfy the analog of
the Family-Viscek dynamic scaling ansatz. This finding permits us to use the powerful tools of kinetic rough-
ening theory to classify, model, and forecast the fluctuations of real-world time series.
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The internal dynamics of many complex real-world sys-
tems is often studied through analysis of the fluctuations of
the output time series �1,2�. Statistically, the fluctuations of
time series z�t� are commonly characterized by their log re-
turns v�t ,��=ln�z�t� /z�t+��� for a fixed sampling time inter-
val � �3�. Many studies have been carried out to analyze the
time series of dynamical variables from physical, biological,
and financial systems �e.g., Ref. �1–5��. Since the resulting
observable variable associated with fluctuations at each mo-
ment is the product of log-return magnitude and sign, recent
investigations have focused on the study of correlations in
the absolute value and sign time series �6�. It was found that
the absolute values of log returns V�t ,��= �v� of many real-
world time series exhibit long-range power-law correlations
�3–6�, indicating that the system does not immediately re-
spond to an amount of information flowing in it, but reacts to
it gradually over a period of time �7�. Accordingly, the analy-
sis of the scaling properties of the fluctuations has been
shown to give important information regarding the underly-
ing processes responsible for the observed macroscopic be-
havior of real-world system �1–7�.

The long-term memory in the time series fluctuations is
commonly analyzed through a study of their structure func-
tion, defined as ��� ,�t�= ��V�t+�t ,��−V�t ,���2�1/2, where
the overbar denotes average over all t in time series of length
T−� �T is the length of original time series z�t�� and the
brackets denote average over different realizations of the
time window of size �t �3�. Alternatively, one can use power-
spectrum of log-return time series, defined as S�q ,��
= �V��q ,��V��−q ,���, where V��q ,��= �T−��−1/2�t�V�t ,��
− V̄�exp�iqt� is the Fourier transform of V�t� �3–5�. It was
found that the structure function and the power spectrum of
the absolute log returns commonly exhibit the power law
behavior

� � ��t�� and S � q−�, �1�

where �=2�+1, even when the time series z�t� looks erratic
and its log returns v�t ,�� are apparently random �see Refs.
�3–5��. The scaling exponent �, also called the Hurst expo-
nent, characterizes the strength of long-range correlations in
the fluctuation behavior �8�. It has been shown that the
knowledge of � is very helpful also for practical purposes
�3–7�. However, the scaling behavior �1� characterizes the

correlations in a log-return time series treated as an analog of
rough interface in �1+1� dimensions �see Refs. �8–10��. It is
worth nothing that this model gives very limited information
about the studied system that does not permit to determine
the universality class of the system, even within the frame-
work of an equilibrium-type theory �11�. Additional informa-
tion can be obtained from the studies of the probability den-
sity function of log-return record �12� and/or the diffusion
entropy analysis �13�.

A better physical understanding of fluctuation dynamics
requires a proper description for correlation properties of lo-
cal variables on different time sampling intervals �5�. In this
work, we propose an approach to properly understand the
dynamics of time series fluctuations by studying the behavior
of absolute log returns for different sampling intervals. Spe-
cifically, we suggest treating the absolute log-return time se-
ries as a moving interface V�t ,��, where the sampling time
interval � plays the role of time variable, whereas the physi-
cal time t plays the role of spatial variable.

In this framework, we performed the dynamic analysis of
fluctuations in the time series associated with systems of
different nature. Specifically, we studied time series associ-
ated with the physical, economic, and informatic systems
�see Table I� analyzed earlier within other frameworks.
Namely, the stress-strain behavior F��� associated with the
paper damage �see Fig. 1� was studied in Ref. �14�. It was
found that the damage branch of the stress-strain curve itself
exhibits persistence associated with the long-range correla-
tions in the fiber network. Radar backscattered signals from
different types of soils were studied in Ref. �15�, where it
was shown that the backscattered signals possess a long
memory with the Hurst exponent related to the mass fractal
dimension of a soil D as �=3−D. The records of the daily
crude oil price �see Fig. 2� and the daily Mexican stock mar-
ket index early were studied in Refs. �5,16�. It was found that
both time series behave randomly with exponentially decay-
ing autocorrelation function, whereas their fluctuations ex-
hibit long-range power-law correlations. The information
flow time series were studied in a large number of works,
e.g., Ref. �17�. In this work, the data of information flow
were taken from the WWW IPN �Instituto Politecnico Na-
cional� server in Ref. �18�, where it was found that the fluc-
tuations of information flow in the WWW IPN server exhibit
scaling behavior �1� with the Hurst exponent �=0.5.
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To study the dynamics of time series fluctuations, in this
work we analyzed the time series of absolute log returns of
original time series. The lengths �T� and the sampling rates
�	t� of the original time series and the ranges ��m
�
�M�
and rates ���� of the sampling intervals of the absolute log
returns ��� are reported in the footnotes of Table I and in the
figure captions. Notice that the length of the log-return time
series is Tl−r=T−�M �see Fig. 1�.

First of all we noted the visual similarity between the
log-return time series with different sampling intervals �see
Figs. 1�c� and 2�b�–2�d��. Quantitatively, the self-affinity of
fluctuation time series is characterized by the scaling behav-
ior �1�, as is illustrated in the graphs in Figs. 3 and 4 for
stress fluctuations shown in Figs. 1�c�, 5, and 6 for the log
returns of crude oil price records shown in Figs. 2�b�–2�d�.
Notice that the structure functions display a power-law be-
havior �1� with ����=const within a wide but bounded inter-
vals of �t �see Figs. 3�a� and 5�a�� with the upper cutoff �tC
increasing with � as

�tC � �1/z, �2�

where z is the dynamic exponent �see Fig. 5�b��. Further-
more, we found that the structure function and power spec-
trum of the absolute log-return also scale with the sampling
interval � as

� � �� and S � ��/z, �3�

where � is the fluctuation growth exponent �see Figs. 3�b�,
3�d�, and 5�c��.

The values of scaling exponents for the absolute log re-
turns of all time series studied in this work are given in Table
I. Notice that in all cases �=2�+1 �see Table I�, as it is
expected for self-affine time series �see Ref. �8��. Moreover,
we found that the dynamic exponent satisfies the scaling re-
lation

z = �/� , �4�

as it follows from data reported in Table I.

TABLE I. Characteristic scaling exponents of absolute log-return time series and the corresponding
universality classes of fluctuation dynamics �EW: Edwards-Wilkinson and KPZ: Kardar-Parisi-Zhang univer-
sality classes in 1+1 dimensions; see Ref. �10��.

Time series
� from
Eq. �1�

� from
Eq. �3�

� from
Eq. �1�

z from
Eq. �2�

z=� /�
Eq. �4� Class

Stress
fluctuationsa

�see Fig. 1�

0.39�0.02 0.55�0.05 1.8�0.2 0.65�0.1 0.7�0.07 ?

Radar
backscattered
signalsb

0.50�0.03 0.25�0.03 2�0.2 1.8�0.4 2�0.06 EW

Crude oil
pricec

�see Fig. 2�

0.36�0.02 0.50�0.03 1.7�0.1 0.7�0.1 0.72�0.05 ?

Mexican
stock market
Indexd

0.49�0.02 0.63�0.03 2.1�0.02 0.7�0.1 3 /4±0.05 ?

Information
flow in
WWW IPN
servere

0.50�0.04 0.34�0.02 1.9�0.2 1.6�0.4 3 /2±0.6 KPZ

aThe force series with the sampling rate 	t=0.2 s have the length T=900±100 s �see Ref. �14��; in this work
we studied the absolute logreturns with the sampling interval � varied in the range from 10 to 100 s with the
rate of 10 s. Data reported for stress fluctuations are the average over results obtained for 30 stress-strain
curves from Ref. �14�; accordingly the error range is determined by the standard variation of data for different
curves.
bRadar backscattered signals from different types of soils were studied in Ref. �16�. In this work we study the
fluctuations of these signals of the length T=50 ns with the sampling rate of 0.01 ns �see Ref. �16��. Reported
data are the average over results obtained for 25 signals.
cTime record of West Texas Intermediate crude oil spot price in the 2003 constant dollars per barrel was taken
from the Bloomberg database �23�. The length of record is T=4879 business days �from 01.02.1986 to
04.26.2005�.
dThe record of Mexican stock market daily index for period of 4438 business days �from 01.04.1988 to
09.23.2005� was taken from Ref. �24��.
eThe information flow in the WWW IPN server records of length T=7000 s with the sampling rate 	t
=1 s were taken from Ref. �18�. Reported data are the average over results obtained for 30 records.
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Our findings indicate the existence of dynamic scaling
behavior analogous to the Family-Viscek dynamic scaling
ansatz for kinetic roughening of moving interface �see Ref.
�10��. Indeed, the scaling relations �1�–�4� imply that the

FIG. 2. �a� Time series of crude oil price in the 1983 constant
US dollars per barrel �from 01.02.1986 to 04.26.2005; source:
Bloomberg database �23�� and �b�–�d� its absolute log returns for
the period of 4096 business days �from 10.16.1986 to 12.20.2002�
with the sampling time intervals �=25 �b�, 50 �c�, and 100 �d�
business days.

FIG. 3. Scaling behavior of �a�, �b� structure function and �c�,
�d� power law spectrum of stress fluctuations �see Fig. 1�c��. �a�
��� ,�t� �arbitrary units� versus �t �10
�t
350 s� for �=5 �1�, 40
�2�, and 160 s �3�; straight lines; data fitting by the first Eq. �1�;
notice that curves are shifted along the y axis for clarity; �b� ��� ,�t�
�arbitrary units� versus � �s� for �t=100 s �1� and 200 s �2�; straight
lines: data fitting by the first Eq. �3�; �c� S �in arbitrary units� versus
q �1/s� for �=20 s �graph obtained with the help of BENOIT 1.3 soft-
ware �25��; straight line: data fitting by the second Eq. �1�; and �d�
S �arbitrary units� versus � �second� for q=1 /�t=0.01 s−1; straight
line: data fitting by the second Eq. �3�.

FIG. 1. �a� Damage image of toilet paper sheet of width L
=10 cm under the uniaxial tension stress with the constant displace-
ment rate u̇=0.01 mm /s; �b� the corresponding times series of
stress F�tf� of length T=650 s, with the sampling rate of 0.2 s,
related to the stress-strain curve F���=F��= u̇t /L� shown in the
inset �see Ref. �16��; and �c� the stress fluctuations V�tV ,�� for dif-
ferent sampling time intervals in the range 10
�
100 s �notice
that tV= tf −max �= tf −100 s, where tf =0 corresponds to the local
maximum of the decreasing branch of stress-strain curve F���
=F�u̇t /L� �see inset in the panel �b��, so the lengths of all series
V�tV ,�� is 750 s, with the sampling rate of 0.2 s�.
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structure function and power spectrum of time series fluctua-
tions exhibit the dynamic scaling behavior

���,�t� � ��f l��t/�1/z� �5�

and

S � q−�fs�q�1/z� , �6�

respectively, where the scaling functions behave as

f l � 	 y� if y  1,

const if y � 1

 �7�

and

fs � 	 y� if y  1,

const if y � 1

 �8�

as is shown in Figs. 4�a�, 4�b�, 5�c�, 5�b�, and 7, where the
data collapses are achieved with scaling exponents �see Table
I� obtained with the scaling relations �1�–�3�.

It should be pointed out that in the graphs Figs. 4�a� and
4�b� each point represent the average over 30 experiments,
while the data collapses for crude oil price fluctuations
shown in Figs. 5�c� and 6�b� corresponds to the single price
time series shown in Fig. 2�a�. The graph �2� in Fig. 7 also
corresponds to data collapse for single time series of the

Mexican stock market Index, whereas each point of the
graphs �1� and �3� in Fig. 7 correspond to 25 radar backscat-
tered signals and 30 time series of information in WWW IPN
server.

Dynamic scaling �5�–�8� permits us to treat the fluctuation
dynamics as a kinetic roughening of moving interface �visu-

FIG. 4. Data collapses �in arbitrary units� for �a� structure func-
tion and �b� power spectrum �S*=104S� of the absolute log returns
of stress fluctuations �see Fig. 1�c�� with the sampling intervals �
=160 �1�, 100 �2�, 75 �3�, 50 �4�, 25 �5�, and 10 s �6� for the time
windows varying in the range 15
1 /q=�t
800 s. Straight lines:
data fitting with Eqs. �5�, �7�, �6�, and �8�, respectively; notice that
in both graphs the gray tone symbols denote the data excluded from
the power-law fitting.

FIG. 5. Scaling behavior of: the structure function of absolute
log returns of crude oil price: �a� ��� ,�t� �arbitrary units� versus �t
�business days� for �=13 �1�, 25 �2�, 50 �3�, 100 �4�, 150 �5�, and
198 �6� business days �straight lines data fitting with Eq. �1�; curves
are shifted along the y axis for clarity�; �b� �tC �business days�
versus � �business days�, straight lines data fitting with Eq. �2�; �c�
��� ,�t� �arbitrary units� versus � �business days� for �t=300 �1�
and T=4096 �2� business days �straight lines data fitting with Eq.
�2�; full symbols are excluded from poer fitting�; and �c� data col-
lapse �in arbitrary units� for series with sampling intervals �=10 �1,
2�, 25 �3, 4�, 150 �5, 6�, and 198 �7, 8� business days for the time
windows varying in the range 3
�t
300 business days, straight
lines: data fitting with Eqs. �5� and �7�.
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alized in Figs. 1�c� and 2�b�–2�d��. Therefore, we can use the
powerful tools of kinetic roughening theory �see Ref. �8–10��
to characterize and model the fluctuations of real-world time
series. Specifically, we can try to determine the universality
class for fluctuation dynamics associated with the set of two
independent scaling exponents, e.g., � and z, analogous to the
universality class for kinetic roughening phenomena �see
Ref. �10,11��.

The dynamical universality classes are determined by the
dimensionality, the conservation laws, the symmetry of the
order parameter, the range of the interactions, and the cou-
pling of the order parameter to conserved quantities �11�. So,

the knowledge of universality class allows us to understand
the fundamental processes ruling the system dynamics.
Hence, we can construct the kinetic equation governed the
fluctuation dynamics. In addition the representation of the
absolute log-return time series as a moving interface permits
to use the kinetic equations from the theory of kinetic rough-
ening for the modeling of fluctuation dynamics which belong
to the same universality class.

In this way, the time-series fluctuation dynamics is ex-
pected to be described by the Langevin-type equation

�V

��
= �� �V

�t
� + ���,t� + F , �9�

where F is the external force, while the noise term ��� , t�
and the actual form of the function � are determined by a

FIG. 6. Scaling behavior of the power spectrum of absolute log
returns of crude oil price: �a� S �arbitrary units� versus q �1/business
day� for sampling intervals �=50 �1� and 198 �2� business days
�graphs obtained with the help of BENOIT 1.3 software �25��; straight
lines: data fitting with the second Eq. �1�; notice that the graphs are
shifted for clarity and the gray tone symbols denote the data ex-
cluded from the power-law fitting. �b� Data collapse �in arbitrary
units� for the power spectrum of time series with the sampling
intervals �=50 �1, 2�, 70 �3, 4�, 100 �5, 6�, and 198 �7, 8� business
days for the time windows varying in the range 10
1 /q=�t

2000 business days; straight lines denotes the data collapse ac-
cording to Eqs. �6� and �8�; the slope of dashed line is 1.72. Insert
shows the power law fitting of data of series �1�, �3�, �5�, �7� de-
noted by the same symbol �circle�.

FIG. 7. Data collapse �in arbitrary units� for the structure func-
tion of absolute log returns of �a� radar backscattered signals with
the sampling intervals �=0.1 �1, 2�, 1 �3, 4�, and 5 ns �5, 6� ns for
the time windows varying in the range 0.1
�t
4 ns; �b� Mexican
stock market index with the time intervals �=10 �1, 2�, 43 �3, 4�,
100 �5�, and 180 business days �6� for the time windows varying in
the range 3
�t
160 business days; and �c� information flow in
WWW IPN server with the sampling intervals �= 10 �1, 2�, 100 �3,
4�, and 360 s �5� for the time windows varying in the range 10

�t
300 s. Straight lines: data fitting with Eqs. �5� and �7�.
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particular model obeying the corresponding class of univer-
sality �see Ref. �10��.

In this way, the values of scaling exponents reported in
Table I suggest that the fluctuations of radar backscattered
signals belong to the Edwards-Wilkinson �EW� universality
class of kinetic roughening �see Ref. �10��, while the fluctua-
tions of information flow in the WWW server belong to
Kardar-Parisi-Zhang �KPZ� universality class in 1+1 dimen-
sions �see Ref. �10��. So, the fluctuations of information flow
in the WWW IPN server can be modeled by the seminal KPZ
equation, i.e., Eq. �9� with

� = a� �2V

�t2 � + b� �V

�t
�2

�10�

and a Gaussian noise ��� , t� with zero mean and variance
���� , t����� , t� ��=���−�� ���t− t� �, where a and b are the
fitting constants and ��¯� is the delta function �10�. In the
case of EW universality, as it is found for fluctuations of
radar backscattering signals b=0 �10�. The fluctuation dy-
namics in other systems studied in this work also can be
modeled with the help of kinetic roughening theory. Namely,
we can use the models of kinetic roughening of interfaces
moving in a medium with long-range correlations in the spa-
tiotemporal disorder �see Refs. �10,19��. Moreover, we can

also model the coupled dynamics of fluctuations in time se-
ries associated with coupled systems, using the models of
kinetic roughening of coupled interfaces moved in disor-
dered media �20�.

Furthermore, making use an appropriate assumptions
about the log-return sign dynamics �see Ref. �7��, the kinetic
roughening models �9� can be used for forecasting of time
series of dynamical variables for systems of different nature.
Indeed, starting from seminal work of Black and Scholes
�21�, the most economic time series forecasting model are
based on the model representation for future volatility �abso-
lute logreturns� as an appropriate stochastic process, e.g.,
�fractional� Brownian motion �see, for example, Refs. �22�,
and references therein�. Our findings permit to use an appro-
priate Langevin-type equation �9� to simulate the implied
future volatility, when the past realized volatility is known.
In general, the suggested approach may be useful for char-
acterization, modeling, and forecast of stochastic time series
arising from diverse science areas, such as statistical physics,
econophysics, medicine, and material science.
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